Systematic Uncertainties
in Polarimetry: RHIC pp lessons

W. Schmidke/BNL *He Workshop
for the polarimetry group BNL 29.09.11

» Overview: P measurement & absolute normalization; polarimeters
» H-jet systematics — backgrounds (~cancel)
- absolute scale
» pC systematics - backgrounds
- E-scale<=A_ instability

- C-target: dE/dz energy loss, multiple scattering 6

» Checks with data
» Future improvements (very truncated list)...
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Overview

» Polarimeters measure left/right asymmetries: €, =(N _-N )/(N_+N )

» Differences in L/R acceptances, up/down luminosities

i NENE - [NLNE
cancel using square root formula: Ou~"0d 04" 0u

R / NENE + /NENE
» Polarization<=asymmetry related by analyzing power: P=¢, /A

» Statistical uncertainty on €,

» Systematic uncertainties on €, AN

» A specific to process used (pp or pC), kinematic range (scattered E, 6)

Absolute normalization
* H-jet (pp scattering) uses polarized target; provides
absolute scale of beam P; also A (pp). But: H-jet low statistics

» Fill-by-fill H-jet—=pC: A (pC) = € (pC)/P . normalizes pC polarimeter

H-jet
» pC: high statistics, fast, transverse intensity/polarization profiles




H-jet polarimeter
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p-Carbon polarimeter

Tor N¢ 2 polarim. / RHIC ring:
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H-Jjet polarization

“‘beam”, “target” identical, same A : forward scattered

proton undetected

€target €beam
AN(t) — polanzed
P target Pyeam — 'Jet target
RHIC proton

measured “‘unpol. beam” “unpol. target beam rec0|I proton
avg. f & § avg. f & § detected

° Effectlve A, may vary fill-to-fill with varying background
e.g. inelastic pp—pp+X: = — ~

» But: same events used for beam, target ¢
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pC polarization

» pC analyzing power is determined fill-by-fill from H-jet P:
A (pC) = €, (pC)/IP

H-jet
* To reduce large statistical uncertainty from H-jet,
A (pC) each pC polarimeter averaged over set of fills

» Variations of A (pC) each measurement, within each normalization
period, introduces systematic uncertainty per measurement

» But: fill-to-fill variations average out over large samples of fill,
approach the limit of P scale uncertainty from H-jet

» Now consider systematic effects on A (pC)



pC backgrounds

» Backgrounds other than elastic pC—pC can change measured e,
» Equivalently: background diluted sample, different effective A
» €.9. background: events not in E _—TOF ‘banana”
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» Backgrounds small-ish, needs estimate




A (PC) < energy scale

» Analyzing powerA (T) very steep
dependence on 12C kinetic energy T:

*» Measure in 0.4<T7<0.9 MeV;
effective A from pC/H-jet ratio

» Sensitive to *C energy scale:
e.g. AT =25keV = dA =35% relative

> Energy scale of scattered '°C major
source of AN, P uncertainty
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0.015 |-
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1 tick=50keV

» 1% point: the energy scale uncertainty of the Si
detectors introduces uncertainty on A , P

» e.g. estimated dead layer in Si ~60 ug/cm?; *C in T range lose ~200 keV
» uncertainty of ~10% on dead layer = 5% uncertainty on A



Ribbon target geometry

» Top view of vertical ribbon target,
width w~7u, thickness t~25nm:

» Angle 6 flat w-side w.r.t. detector

» Entire ribbon (w,t) is bathed in beam
(beam o,, = 0.5-1 mm)

scat. C to detector

p-beam

» Target may be twisted:
length scale of twists = 150 u

several twists across beam

» Beam-eye view of target on frame:

» Target may be loose, up to 2-3 mm play ribbon length

~2.5¢cm

As target sways in the p breeze, may:
» Rotate about vertical axis, changing 6
& path length L through target en route to detector: Let/sin(6)
» May move along beam direction, changing
range of scattering angles covered by detector )




“C energy loss in target

» Scattered "“C nuclei lose energy in '“C target
en route to Si detectors
a Measured Tmeas down-shifted from scattered TSCa

a\We measure over a fixed T___range

» If 6 changes path length changes
given T__ corresponds to different T __, A :

» L = t/(2-sinf) = steep change A as — 0°
» Put in #'s for C-C dE/dz, A (T),
relative variation (%) of A with ©:

scat. C to det.

t p-beam

Loose targets = unstable orientation
=> unstable effective A




'“C multiple scattering in target

» The recoil "*C also undergo multiple
Coulomb scattering, RMS angle 6_ o VL/T

U)LE25D

(L=path length, T=kinetic E) *g,
» No mult. scat. ~all perpendicular to beam
» For detector 18cm from target
more material = more events larger 0, Z:
» Lower energy = larger scattering angles %
» Mean energy drops at larger 6, Z: ;z;
|_

» On top of this is the energy loss in target
(previous slide)

» Consider all effects = simple simulation
(already used for these plots)

Z = direction along beam
Z = 0 perpendicular to target
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Simple simulation

Like RHIC pC polarimeters:
» Detector 18 cm from beam, covering 1 cm along beam axis
» Maximum paths lengths in target L _ =(0,1,4,9)x25 nm

» Actual path length O<L<L _ (scattering anywhere across target)

» Multiple scattering and energy loss through L material
» After E-loss detect “C with 0.4<T _ <0.9 MeV
» For these events consider effective A relative
to A, with no scattering, E-loss
» Look atA /A  as function of:
-L__ (varies as target rotates about vert. axis)

- Z = detector center along beam axis, Z=0 1 target
(Z varies as target sways along beam axis)

12



Simple simulation

Z = detector center along beam
A /A vs.Z-det. various L Z = 0 perpendicular to target
N 'NO ) ? max -

x 91-3 I|lllllllllll'lllllllllllllllllllllll

il e
» 0=no material < 2 U T T T T s ol
. Rotate target about vert. axis: Lt D e e
e.g. 1,4,9 = nominal target 90°,15°5° L || ]
4,9 = 2x thick. target 30°,15°  w o [ { ]

4,9 = 4x thick. target 90°,45° S EEE e F A
» As target rotates, thickness varies O S £ N N N S - -
A, can change by >15% L e
» As target sways longitudinally o Pl [ e L]
(Z-det varies), few % shifts if AR T R

target-detector ~centered,; I |
much worse if misaligned

target sway

=> Target orientation, alignment significant effect on A

that was just a simulation, we have some data 13



Data: A per pC target

» Run11 had nominal 25 nm thick targets, & a few 2x,4x thick.

» A each target determined -

=
<C

from pC/H-jet normalization =, ..

» Relative to fixed A
(error bars statistical): .

» Blue lines are mean
A, each polar.

Clear trend:

» Thick targets lower A

» Consistent with more o
E-loss in target, lower A

» 1x—4x consistent with
previous slide

= Target thickness significant effect on A
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Syst. checks with data

» Check with data: some things should (ideally) be constant

» €.g. pC/H-jetratio = A , here per RHIC fill:

* Error bars are stat.,

_ _ bU_ratio
dominated by H-jet )
516}
1.4
» Constant fit, y/NDOF>1 |-

=> estimate of syst. uncert.
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Syst. checks with data

» Check with data: some things should (ideally) be the same

» Have two pC polar./ring, each measurement same P
» Here ratio per RHIC fill; error bars are stat.:
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» Constant fit, x*/NDOF>1 = estimate of syst. uncert.

» Data like these used to evaluate syst. uncertainties
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Improvements: pC det. segment.

» Present: RHIC pC detectors segmented azimuthally
* AGS pC polar. has some longitudinally (Z) segmented detectors:
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» Peak of distributions ~ Z of target w.r.t. detector

» Widths of these distributions ~ path length in target material
(compare plots slide 11)

» May rotate a few RHIC detectors to longitudinal segmentation

» Maybe track Z (swaying ribbons), correlate width—A

=> correct for target alignment, orientation
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Improvements: targets

Orientation problem: scat. C to det.

p-beam
 Circularly symmetric targets would avoid orientation stability problem

® e.g. carbon wire: ‘ or a carbon tube:

» Starting to look like nanotubes...
» To set the scale, present 25 nm ribbons ~115 C atoms thick

Looseness problem:

» Tight, straight ribbon
would help orientation,
alignment stability

» But tradeoff: tightness<=target lifetime

> Need to explore alternate technologies, geometries...
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Closing

Proton polarimetry
» Targets can give largest systematic effects
» May not be all, but must study, pursue alternatives

*He polarimetry
» H-jet replacement probably very different situation
» pC lessons probably applicable for a *HeC polarimeter

19
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